Тригонометрические тождества примеры доказательства. Старт в науке. История развития тригонометрии


В этой статье мы всесторонне рассмотрим . Основные тригонометрические тождества представляют собой равенства, устанавливающие связь между синусом, косинусом, тангенсом и котангенсом одного угла, и позволяют находить любую из этих тригонометрических функций через известную другую.

Сразу перечислим основные тригонометрические тождества, которые разберем в этой статье. Запишем их в таблицу, а ниже дадим вывод этих формул и приведем необходимые пояснения.

Навигация по странице.

Связь между синусом и косинусом одного угла

Иногда говорят не об основных тригонометрических тождествах, перечисленных в таблице выше, а об одном единственном основном тригонометрическом тождестве вида . Объяснение этому факту достаточно простое: равенства получаются из основного тригонометрического тождества после деления обеих его частей на и соответственно, а равенства и следуют из определений синуса, косинуса, тангенса и котангенса . Подробнее об этом поговорим в следующих пунктах.

То есть, особый интерес представляет именно равенство , которому и дали название основного тригонометрического тождества.

Прежде чем доказать основное тригонометрическое тождество, дадим его формулировку: сумма квадратов синуса и косинуса одного угла тождественно равна единице. Теперь докажем его.

Основное тригонометрическое тождество очень часто используется при преобразовании тригонометрических выражений . Оно позволяет сумму квадратов синуса и косинуса одного угла заменять единицей. Не менее часто основное тригонометрическое тождество используется и в обратном порядке: единица заменяется суммой квадратов синуса и косинуса какого-либо угла.

Тангенс и котангенс через синус и косинус

Тождества, связывающие тангенс и котангенс с синусом и косинусом одного угла вида и сразу следуют из определений синуса, косинуса, тангенса и котангенса. Действительно, по определению синус есть ордината y, косинус есть абсцисса x, тангенс есть отношение ординаты к абсциссе, то есть, , а котангенс есть отношение абсциссы к ординате, то есть, .

Благодаря такой очевидности тождеств и часто определения тангенса и котангенса дают не через отношение абсциссы и ординаты, а через отношение синуса и косинуса. Так тангенсом угла называют отношение синуса к косинусу этого угла, а котангенсом – отношение косинуса к синусу.

В заключение этого пункта следует отметить, что тождества и имеют место для всех таких углов , при которых входящие в них тригонометрические функции имеют смысл. Так формула справедлива для любых , отличных от (иначе в знаменателе будет нуль, а деление на нуль мы не определяли), а формула - для всех , отличных от , где z - любое .

Связь между тангенсом и котангенсом

Еще более очевидным тригонометрическим тождеством, чем два предыдущих, является тождество, связывающее тангенс и котангенс одного угла вида . Понятно, что оно имеет место для любых углов , отличных от , в противном случае либо тангенс, либо котангенс не определены.

Доказательство формулы очень просто. По определению и , откуда . Можно было доказательство провести и немного иначе. Так как и , то .

Итак, тангенс и котангенс одного угла, при котором они имеют смысл, есть .

Тригонометрические тождества - это равенства, которые устанавливают связь между синусом, косинусом, тангенсом и котангенсом одного угла, которая позволяет находить любую из данных функций при условии, что будет известна какая-либо другая.

\[ \sin^{2}\alpha + \cos^{2} \alpha = 1 \]

\[ tg \alpha = \dfrac{\sin \alpha}{\cos \alpha}, \enspace ctg \alpha = \dfrac{\cos \alpha}{\sin \alpha} \]

\[ tg \alpha \cdot ctg \alpha = 1 \]

Зависимость между синусом и косинусом

\[ \sin^{2} \alpha+\cos^{2} \alpha=1 \]

Данное тождество говорит о том, что сумма квадрата синуса одного угла и квадрата косинуса одного угла равна единице, что на практике дает возможность вычислить синус одного угла, когда известен его косинус и наоборот.

При преобразовании тригонометрических выражений очень часто используют данное тождество, которое позволяет заменять единицей сумму квадратов косинуса и синуса одного угла и также производить операцию замены в обратном порядке.

Нахождение тангенса и котангенса через синус и косинус

\[ tg \alpha = \dfrac{\sin \alpha}{\cos \alpha},\enspace ctg \alpha=\dfrac{\cos \alpha}{\sin \alpha} \]

Данные тождества образуются из определений синуса, косинуса, тангенса и котангенса. Ведь если разобраться, то по определению ординатой \(\dfrac{y}{x}=\dfrac{\sin \alpha}{\cos \alpha} \) , а отношение \(\dfrac{x}{y}=\dfrac{\cos \alpha}{\sin \alpha} \) - будет являться котангенсом.

Добавим, что только для таких углов \(\alpha \) , при которых входящие в них тригонометрические функции имеют смысл, будут иметь место тождества , .

Например: \(tg \alpha = \dfrac{\sin \alpha}{\cos \alpha} \) является справедливой для углов \(\alpha \) , которые отличны от \(\dfrac{\pi}{2}+\pi z \) , а \(ctg \alpha=\dfrac{\cos \alpha}{\sin \alpha} \) - для угла \(\alpha \) , отличного от \(\pi z \) , \(z \) - является целым числом.

Зависимость между тангенсом и котангенсом

\[ tg \alpha \cdot ctg \alpha=1 \]

Данное тождество справедливо только для таких углов \(\alpha \) , которые отличны от \(\dfrac{\pi}{2} z \) . Иначе или котангенс или тангенс не будут определены.

Опираясь на вышеизложенные пункты, получаем, что \(tg \alpha = \dfrac{y}{x} \) , а \(ctg \alpha=\dfrac{x}{y} \) . Отсюда следует, что \(tg \alpha \cdot ctg \alpha = \dfrac{y}{x} \cdot \dfrac{x}{y}=1 \) . Таким образом, тангенс и котангенс одного угла, при котором они имеют смысл, являются взаимно обратными числами.

Зависимости между тангенсом и косинусом, котангенсом и синусом

\(tg^{2} \alpha + 1=\dfrac{1}{\cos^{2} \alpha} \) - сумма квадрата тангенса угла \(\alpha \) и \(\alpha \) , отличных от \(\dfrac{\pi}{2}+ \pi z \) .

\(1+ctg^{2} \alpha=\dfrac{1}{\sin^{2}\alpha} \) - сумма \(\alpha \) , равняется обратному квадрату синуса данного угла. Данное тождество справедливо для любого \(\alpha \) , отличного от \(\pi z \) .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
"Тригонометрические тождества". 10-й класс

Математическая истина, независимо
от того, в Париже или в Тулузе, одна и та же”
Б. Паскаль

Тип урока: Урок формирования умений и навыков.

Урок общеметодологической направленности.

Деятельностная цель : формирование способности учащихся к новому способу действия, связанному с построением структуры изученных понятий и алгоритмов.

Цели урока:

    дидактическая : научить применять полученные ранее знания, умения и навыки для упрощения выражений и доказательства тригонометрических тождеств.

    развивающая: развивать логическое мышление, память, познавательный интерес, продолжать формирование математической речи, вырабатывать умение анализировать и сравнивать.

    воспитательная: показать, что математические понятия не изолированы друг от друга, а представляют определенную систему знаний, все звенья которой находятся во взаимной связи, продолжить формирование эстетических навыков при оформлении записей, навыков контроля и самоконтроля.

Для успешного решения задач по тригонометрии необходимо уверенное владение многочисленными формулами. Тригонометрические формулы надо помнить. Но это не значит, что их надо заучивать все наизусть, главное запоминать не сами формулы, а алгоритмы их вывода. Любую тригонометрическую формулу можно довольно быстро получить, если твердо знать определения и основные свойства функций sinα, cosα, tgα, ctgα,соотношение sin 2 α+ cos 2 α =1 и т.д.

Разучивание тригонометрических формул в школе не для того чтобы вы всю оставшуюся жизнь вы вычисляли синусы и косинусы, а для того чтобы ваш мозг приобрел способность работать. ( . Слайд 2 )

Дороги не те знания, которые отлагаются в мозгу, как жир; дороги те, которые превращаются в умственные мышцы” писал Г. Спесер, английский философ и социолог.

Будем накачивать и тренировать умственные мышцы. Поэтому повторим основные тригонометрические формулы. ТЕСТ (Слайд 4)(Слайд 5)

Мы повторили формулы, теперь можем помочь двум друзьям, назовём их Ислам и Магомед.

После преобразования некоторого очень сложного тригонометрического выражения А они получили следующие выражения: (Слайд 6)

(Слайд 7) Каждый отстаивал свой ответ. Как узнать кто из них прав? Обратились к Артёму, который дружит с Петром “Платон мне друг, но истина дороже”: сказал Артём и предложил несколько способов разрешения их спора. А какие вы можете предложить способы установить истину? Предлагают способы установления истины (Слайд 8):

1) Преобразовать, упростить А П и А с , т.е. привели к одному выражению

2) А П – А с = 0

3) …..

Т. е. оба были правы. И их ответы равны при всех допустимых значениях α и β .

Как называются такие выражения? Тождествами. Какие тождества вы знаете?

Тождество , основное понятие логики, философии и математики; используется в языках научной теорий для формулировки определяющих соотношений, законов и теорем.

Тождество – философская категория, выражающая равенство, одинаковость предмета, явления самим с собой или равенство нескольких предметов.

В математике тождество – это равенство, которое справедливо для любых допустимых значений входящих в него переменных. (Слайд 9)

Тема урока : “Тригонометрические тождества”.

Цели: найти способы.

Двое работают у доски.

2. Доказать тождество.

П.ч.=Л.ч.

Тождество доказано.

3. Доказать тождество:

1 способ:

2 способ:

Способы доказательства тождеств.

    правой части тождества. Если в итоге получим левую часть, тогда тождество считается доказанным.

    Выполнить равносильные преобразования левой и правой части тождества. Если в результате получим одинаковый результат, тогда тождество считается доказанным.

    Из правой части тождества вычитаем левую часть.

    Из левой части тождества вычитают правую часть. Производим над разностью равносильные преобразования. И если в итоге получаем нуль, то тождество считается доказанным.

Следует так же помнить, что тождество справедливо лишь для допустимых значений переменных.

Для чего необходимо уметь доказывать тригонометрические тождества? В ЕГЭ задание С1 тригонометрические уравнения!

Решается № 465-467

Итак, подведем итоги урока. (Слайд 10)

Какова была тема урока?

Какие способы доказательства тождеств вам известны?

1. Преобразование левой части к правой или правой к левой.
2. Преобразование левой и правой части к одному и тому же выражению.
3. Составление разности левой и правой частей и доказательство равенства этой разности нулю.

Какие формулы при этом используются?

1. Формулы сокращенного умножения.
2. 6 тригонометрических тождеств.

Рефлексия урока. (Слайд 11)

Продолжите фразы:

сегодня на уроке я узнал …
– сегодня на уроке я научился…
– сегодня на уроке я повторил…
– сегодня на уроке я познакомился…
– сегодня на уроке мне понравилось…

Домашнее задание. №№465-467 (Слайд 12)

Творческое задание: Подготовить презентацию о знаменитых тождествах математики. (Например тождество Эйлера.) (Слайд

Класс: 10

“Математическая истина, независимо
от того, в Париже или в Тулузе, одна и та же”
Б. Паскаль

Тип урока: Урок формирования умений и навыков.

Урок общеметодологической направленности.

Деятельностная цель: формирование способности учащихся к новому способу действия, связанному с построением структуры изученных понятий и алгоритмов.

Цели урока:

  • дидактическая: научить применять полученные ранее знания, умения и навыки для упрощения выражений и доказательства тригонометрических тождеств.
  • развивающая:
  • развивать логическое мышление, память, познавательный интерес, продолжать формирование математической речи, вырабатывать умение анализировать и сравнивать.
  • воспитательная:
  • показать, что математические понятия не изолированы друг от друга, а представляют определенную систему знаний, все звенья которой находятся во взаимной связи, продолжить формирование эстетических навыков при оформлении записей, навыков контроля и самоконтроля.

Для успешного решения задач по тригонометрии необходимо уверенное владение многочисленными формулами. Тригонометрические формулы надо помнить. Но это не значит, что их надо заучивать все наизусть, главное запоминать не сами формулы, а алгоритмы их вывода. Любую тригонометрическую формулу можно довольно быстро получить, если твердо знать определения и основные свойства функций sinα, cosα, tgα, ctgα,соотношение sin 2 α+ cos 2 α =1 и т.д.

Разучивание тригонометрических формул в школе не для того чтобы вы всю оставшуюся жизнь вы вычисляли синусы и косинусы, а для того чтобы ваш мозг приобрел способность работать. (Презентация . Слайд 2 )

Дороги не те знания, которые отлагаются в мозгу, как жир; дороги те, которые превращаются в умственные мышцы” писал Г. Спесер, английский философ и социолог.

Будем накачивать и тренировать умственные мышцы. Поэтому повторим основные тригонометрические формулы. (Слайд 3)

(Слайд 4)

(Слайд 5)

Мы повторили формулы, теперь можем помочь двум друзьям, назовём их Пётр и Степан.

После преобразования некоторого очень сложного тригонометрического выражения А они получили следующие выражения: (Слайд 6)

(Слайд 7) Каждый отстаивал свой ответ. Как узнать кто из них прав? Обратились к Артёму, который дружит с Петром “Платон мне друг, но истина дороже”: сказал Артём и предложил несколько способов разрешения их спора. А какие вы можете предложить способы установить истину? Предлагают способы установления истины (Слайд 8):

1) Преобразовать, упростить А П и А с, т.е. привели к одному выражению

2) А П – А с = 0

Т. е. оба были правы. И их ответы равны при всех допустимых значениях α и β .

Как называются такие выражения? Тождествами. Какие тождества вы знаете?

То ждество , основное понятие логики, философии и математики; используется в языках научной теорий для формулировки определяющих соотношений, законов и теорем.

В математике тождество – это равенство, которое справедливо для любых допустимых значений входящих в него переменных. (Слайд 9)

Тема урока: “Тригонометрические тождества”.

Цели: найти способы.

Двое работают у доски.

№ 2. Доказать тождество.

Тождество доказано.

№ 3. Доказать тождество:

1 способ:

2 способ:

Способы доказательства тождеств.

  1. правой части тождества. Если в итоге получим левую часть, тогда тождество считается доказанным.
  2. Выполнить равносильные преобразования левой и правой части тождества. Если в результате получим одинаковый результат, тогда тождество считается доказанным.
  3. Из правой части тождества вычитаем левую часть.
  4. Из левой части тождества вычитают правую часть.
  5. Производим над разностью равносильные преобразования. И если в итоге получаем нуль, то тождество считается доказанным.

Следует так же помнить, что тождество справедливо лишь для допустимых значений переменных.

Для чего необходимо уметь доказывать тригонометрические тождества? В ЕГЭ задание С1 тригонометрические уравнения!

Решается № 87 (п. 3)

Итак, подведем итоги урока. (Слайд 10)

Какова была тема урока?

Какие способы доказательства тождеств вам известны?

1. Преобразование левой части к правой или правой к левой.
2. Преобразование левой и правой части к одному и тому же выражению.
3. Составление разности левой и правой частей и доказательство равенства этой разности нулю.

Какие формулы при этом используются?

1. Формулы сокращенного умножения.
2. 6 тригонометрических тождеств.

Рефлексия урока. (Слайд 11)

Продолжите фразы:

– сегодня на уроке я узнал …
– сегодня на уроке я научился…
– сегодня на уроке я повторил…
– сегодня на уроке я познакомился…
– сегодня на уроке мне понравилось…

Домашнее задание. Глава VIII; §6; № 78(четные); № 80(2; 4); № 87(2; 4). (Слайд 12)

Творческое задание: Подготовить презентацию о знаменитых тождествах математики. (Например тождество Эйлера.) (Слайд 13)

Пример 2. Доказать тождество

Это тождество мы будем доказывать путем преобразования выражения, стоящего в правой части.

Способ 1.

Поэтому

Способ 2.

Прежде всего заметим, что ctg α =/= 0; в противном случае не имело бы смысла выражение tg α = 1 / ctg α . Но если ctg α =/= 0, то числитель и знаменатель подкоренного выражения можно умножить на ctg α , не изменяя значения дроби. Следовательно,

Используя тождества tg α ctg α = 1 и 1+ ctg 2 α = cosec 2 α , получаем

Поэтому что и требовалось доказать.

Замечание. Следует обратить внимание на то, что левая часть доказанного тождества (sin α ) определена при всех значениях α , а правая - лишь при α =/= π / 2 n.

Поэтому только при всех допустимых значениях α Вообще же эти выражения не эквивалентны друг другу.

Пример 3. Доказать тождество

sin (3 / 2 π + α ) + cos (π - α ) = cos (2π + α ) - 3sin ( π / 2 - α )

Преобразуем левую и правую части этого тождества, используя формулы приведения:

sin (3 / 2 π + α ) + cos (π - α ) = - cos α - cos α = - 2 cos α ;

cos (2π + α ) - 3sin ( π / 2 - α ) = cos α - 3 cos α = - 2 cos α .

Итак, выражения, стоящие в обеих частях данного тождества, приведены к одному и тому же виду. Тем самым тождество доказано.

Пример 4. Доказать тождество

sin 4 α + cos 4 α - 1 = - 2 sin 2 α cos 2 α .

Покажем, что разность между левой и правой частями. данного тождества равна нулю.

(sin 4 α + cos 4 α - 1) - (- 2 sin 2 α cos 2 α ) = (sin 4 α + 2sin 2 α cos 2 α + cos 4 α ) - 1 =

= (sin 2 α + cos 2 α ) 2 - 1 = 1 - 1 = 0.

Тем самым тождество доказано.

Пример 5. Доказать тождество

Это тождество можно рассматривать как пропорцию. Но чтобы доказать справедливость пропорции a / b = c / d , достаточно показать, что произведение ее крайних членов ad равно произведению ее средних членов bc . Так мы поступим и в данном случае. Покажем, что (1 - sin α ) (1+ sin α ) = cos α cos α .

Действительно, (1 - sin α ) (1 + sin α ) = 1 -sin 2 α = cos 2 α .