Рождение вселенной. Теория Большого взрыва: история эволюции нашей Вселенной Возникновение вселенной для детей

Одним из основных вопросов, которые не выходят из сознания человека, всегда был и является вопрос: «как появилась Вселенная?». Конечно же, однозначного ответа на данный вопрос нет, и вряд ли будет получен в скором времени, однако наука работает в этом направлении и формирует некую теоретическую модель зарождения нашей Вселенной. Прежде всего следует рассмотреть основные свойства Вселенной, которые должна описываться в рамках космологической модели:

  • Модель должна учитывать наблюдаемые расстояния между объектами, а также скорость и направление их движения. Подобные расчеты основываются на законе Хаббла: cz = H 0 D , где z – красное смещение объекта, D – расстояния до этого объекта, c – скорость света.
  • Возраст Вселенной в модели должен превышать возраст самых старых в мире объектов.
  • Модель должна учитывать первоначальное обилие элементов.
  • Модель должна учитывать наблюдаемую .
  • Модель должна учитывать наблюдаемый реликтовый фон.

Рассмотрим кратко общепризнанную теорию возникновения и ранней эволюции Вселенной, которая поддерживается большинством ученых. Сегодня под теорией Большого взрыва подразумевают комбинацию модели горячей Вселенной с Большим взрывом. И хотя данные концепции сперва существовали независимо друг от друга, в результате их объединение удалось объяснить первоначальный химический состав Вселенной, а также наличие реликтового излучения.

Согласно данной теории, Вселенная возникла около 13,77 млрд лет назад из некоторого плотного разогретого объекта — , плохо поддающееся описанию в рамках современной физики. Проблема космологической сингулярности, помимо всего прочего, в том, что при ее описании большинство физических величин, вроде плотности и температуры, стремятся к бесконечности. При этом, известно, что при бесконечной плотности (мера хаоса) должна устремляться к нулю, что никак не совмещается с бесконечной температурой.

    • Первые 10 -43 секунды после Большого Взрыва называют этапом квантового хаоса. Природа мироздания на этом этапе существования не поддается описанию в рамках известной нам физики. Происходит распад непрерывного единого пространства-времени на кванты.
  • Планковский момент – момент окончания квантового хаоса, который выпадает на 10 -43 секунду. В этот момент параметры Вселенной равнялись , вроде планковской температуры (около 10 32 К). В момент планковской эпохи все четыре фундаментальные взаимодействия (слабое, сильное, электромагнитное и гравитационное) являлись объединенными в некое одно взаимодействие. Рассматривать планковский момент как некоторый продолжительный период – не представляется возможным, так как с параметрами меньше планковских современная физика не работает.
  • Стадия . Следующей стадией истории Вселенной стала инфляционная стадия. В первый момент инфляции от единого суперсимметричного поля (ранее включающего поля фундаментальных взаимодействий) отделилось гравитационное взаимодействие. В этот период вещество обладает отрицательным давлением, что вызывает экспоненциальный рост кинетической энергии Вселенной. Проще говоря, в данный период Вселенная стала очень быстро раздуваться, а ближе концу энергия физических полей переходит в энергию обычных частиц. В конце данной стадии значительно повышается температура вещества и излучения. Вместе с окончанием стадии инфляции выделяется и сильное взаимодействие. Также в этот момент возникает .
  • Стадия радиационного доминирования. Следующая стадия развития Вселенной, которая включает несколько этапов. На этой стадии температура Вселенной начинает понижаться, образуются кварки, затем адроны и лептоны. В эпоху нуклеосинтеза происходит образование начальных химических элементов, синтезируется гелий. Однако, излучение все еще преобладает над веществом.
  • Эпоха доминирования вещества. Спустя 10 000 лет энергия вещества постепенно превосходит энергию излучения и происходит их разделения. Вещество начинает доминировать над излучением, возникает реликтовый фон. Также разделение вещества с излучением значительно усилило изначальные неоднородности в распределении вещества, в результате чего начали образовываться галактики и сверхгалактики. Законны Вселенной пришли к тому виду, в котором мы наблюдаем их сегодня.

Вышеописанная картина сложена из нескольких основополагающих теорий и дает общие представление о формировании Вселенной на ранних этапах ее существования.

Откуда появилась Вселенная?

Если Вселенная возникла из космологической сингулярности, то откуда взялась сама сингулярность? На данный вопрос дать точный ответ, пока, невозможно. Рассмотрим некоторые космологические модели, затрагивающие «рождение Вселенной».

Циклические модели

Данные модели строятся на утверждении, что Вселенная существовала всегда и со временем лишь меняется ее состояние, переходя от расширения к сжатию – и обратно.

  • Модель Стейнхардта-Турока. Данная модель строится на теории струн (М-теории), так как использует такой объект как «брана». Согласно этой модели видимая Вселенная располагается внутри 3-бране, которая периодически, раз в несколько триллионов лет, сталкивается с другой 3-браной, что вызывает подобие Большого Взрыва. Далее наша 3-брана начинает отдаляться от другой и расширяться. В какой-то момент доля темной энергии получает первенство и скорость расширения 3-браны растет. Колоссальное расширение рассеивает вещество и излучение настолько, что мир становится почти однородным и пустым. В конце концов происходит повторное столкновение 3-бран, в результате чего наша возвращается к начальной фазе своего цикла, вновь зарождая нашу «Вселенную».

  • Теория Лориса Баума и Пола Фрэмптона также гласит о цикличности Вселенной. Согласно их теории последняя после Большого Взрыва будет расширяться за счет темной энергии до тех пор, пока не приблизится к моменту «распада» самого пространства-времени – Большой Разрыв. Как известно, в «замкнутой системе энтропия не убывает» (второе начало термодинамики). Из этого утверждения следует, что Вселенная не может вернуться к исходному состоянию, так как во время такого процесса энтропия должна убывать. Однако эта проблема решается рамках данной теории. Согласно теории Баума и Фрэмптона за миг до Большого Разрыва Вселенная распадается на множество «лоскутов», каждый из которых обладает довольно малым значением энтропии. Испытывая ряд фазовых переходов, данные «лоскуты» бывшей Вселенной порождают материю и развиваются аналогично первоначальной Вселенной. Эти новые миры не взаимодействуют друг с другом, так как разлетаются со скоростью больше скорости света. Таким образом, ученые избежали и космологической сингулярности, с которой начинается рождение Вселенной согласно большинству космологических теорий. То есть в момент конца своего цикла Вселенная распадается на множество других невзаимодействующих миров, которые станут новыми вселенными.
  • Конформная циклическая космология – циклическая модель Роджера Пенроуза и Ваагна Гурзадяна. Согласно данной модели Вселенная способна перейти в новый цикл, не нарушая второе начало термодинамики. Данная теория опирается на предположение, что черные дыры уничтожают поглощенную информацию, что неким образом «законно» понижает энтропию Вселенной. Тогда каждый такой цикл существования Вселенной начинается с подобия Большого Взрыва и заканчивается сингулярностью.

Другие модели возникновения Вселенной

Среди других гипотез, объясняющих появление видимой Вселенной наиболее популярны две следующие:

  • Хаотическая теория инфляции — теория Андрея Линде. Согласно данной теории существует некоторое скалярное поле, которое неоднородно во всем своем объеме. То есть в различных областях вселенной скалярное поле имеет разное значение. Тогда в областях, где поле слабое – ничего не происходит, в то время как области с сильных полем начинают расширяться (инфляция) за счет его энергии, образуя при этом новые вселенные. Такой сценарий подразумевает существование множества миров, возникших неодновременно и имеющих свой набор элементарных частиц, а, следовательно, и законов природы.
  • Теория Ли Смолина – предполагает, что Большой Взрыв не является началом существования Вселенной, а – лишь фазовым переходом между двумя ее состояниями. Так как до Большого Взрыва Вселенная существовала в форме космологической сингулярности, близкой по своей природе к сингулярности черной дыры, Смолин предполагает, что Вселенная могла возникнуть из черной дыры.

Итоги

Несмотря на то, что циклические и другие модели отвечают на ряд вопросов, ответы на которые не может дать теория Большого Взрыва, в том числе проблема космологической сингулярности. Все же в комплекте с инфляционной теорией Большой Взрыв более цельно объясняет возникновение Вселенной, а также сходится с множеством наблюдений.

Сегодня исследователи продолжают интенсивно изучать возможные сценарии зарождения Вселенной, однако, дать неопровержимый ответ на вопрос «Как появилась Вселенная?» — вряд ли удастся в ближайшем будущем. На это есть две причины: прямое доказательство космологических теорий практически невозможно, лишь косвенное; даже теоретически нет возможности получить точную информацию о мире до момента Большого Взрыва. По этим двум причинам ученым остается лишь выдвигать гипотезы и строить космологические модели, которые максимально верно будут описывать природу наблюдаемой нами Вселенной.

***Первые 10 в -43 секунды после Большого Взрыва называют этапом квантового хаоса. Природа мироздания на этом этапе существования не поддается описанию в рамках известной нам физики. Происходит распад непрерывного единого пространства-времени на кванты.

***Планковский момент – момент окончания квантового хаоса, который выпадает на 10 в -43 секунду. В этот момент параметры Вселенной равнялись планковским величинам, вроде планковской температуры (около 1032 К). В момент планковской эпохи все четыре фундаментальные взаимодействия (слабое, сильное, электромагнитное и гравитационное) являлись объединенными в некое одно взаимодействие. Рассматривать планковский момент как некоторый продолжительный период – не представляется возможным, так как с параметрами меньше планковских современная физика не работает.

***Стадия инфляции. Следующей стадией истории Вселенной стала инфляционная стадия. В первый момент инфляции от единого суперсимметричного поля (ранее включающего поля фундаментальных взаимодействий) отделилось гравитационное взаимодействие. В этот период вещество обладает отрицательным давлением, что вызывает экспоненциальный рост кинетической энергии Вселенной. Проще говоря, в данный период Вселенная стала очень быстро раздуваться, а ближе к концу энергия физических полей переходит в энергию обычных частиц. В конце данной стадии значительно повышается температура вещества и излучения. Вместе с окончанием стадии инфляции выделяется и сильное взаимодействие. Также в этот момент возникает барионная асимметрия Вселенной.
[Барионная асимметрия Вселенной – наблюдаемое явление преобладания вещества над антивеществом во Вселенной]

***Стадия радиационного доминирования. Следующая стадия развития Вселенной, которая включает несколько этапов. На этой стадии температура Вселенной начинает понижаться, образуются кварки, затем адроны и лептоны. В эпоху нуклеосинтеза происходит образование начальных химических элементов, синтезируется гелий. Однако, излучение все еще преобладает над веществом.

***Эпоха доминирования вещества. Спустя 10 000 лет энергия вещества постепенно превосходит энергию излучения и происходит их разделения. Вещество начинает доминировать над излучением, возникает реликтовый фон. Также разделение вещества с излучением значительно усилило изначальные неоднородности в распределении вещества, в результате чего начали образовываться галактики и сверхгалактики. Законны Вселенной пришли к тому виду, в котором мы наблюдаем их сегодня.

Вышеописанная картина сложена из нескольких основополагающих теорий и дает общие представление о формировании Вселенной на ранних этапах ее существования.

Сегодня мне хочется рассказать об истории нашей вселенной. О том, как из маленькой точки мироздание превратилось в то, что мы сейчас наблюдаем вокруг себя.

Ну что, поехали.

Вселенная существует почти 14 миллиардов лет. За этот очень длинный промежуток времени, она преодолела несколько эпох своей истории. Сейчас идёт 13--ый этап развития Вселенной, который называется "эра вещества".

Как же называются все фазы эволюции Вселенной, сколько они длились, что при них происходило? Как развивался окружающий нас мир?

Данная статья ответит Вам на эти вопросы.

Я опишу все этапы истории Вселенной в порядке с самого раннего до современного. Поэтому, начнём с "августинской эпохи".

Августинская эпоха.

Эта эпоха включает в себя состояние вселенной "до" и в момент Большого Взрыва. О данном этапе развития мира ничего толком не известно - существуют лишь гипотезы - так как современные физические теории не могут описать события до "планковской эпохи". Учёные знают лишь то, что в самом конце данной эры произошёл Большой взрыв - внезапано началось расширение пространства. К началу этого поистине грандиозного события, Вселенная была заточена в очень маленькую точку, обладая бесконечными плотностью и температурой, т.е. находилась в состоянии "космологической сингулярности".

Планковская эпоха.

Это самый ранний этап развития Вселенной, о котором существуют какие-либо теоретические предположения и описания. Данная фаза началась сразу после большого Взрыва и длилась в течение т.н. "планковского времени" от 0 до 10 -43 секунд после рождения Вселенной.

В то время (происходило чёрт знает что) размеры Вселенной были очень малы. Настолько, что квантовые эффекты - явления, происходящие с частицами - преобладали над физическими взаимодействиями.

Вселенная в эту эпоху также обладала планковской температурой (10 32 Кельвинов), энергией (10 19 миллиардов электронвольт), радиусом (10 -35 метров, что равно планковской длине) и плотностью (10 97 кг/м 3).

Все четыре типа взаимодействия частиц и состоящих из них тел (их ещё называют "фундаментальными") - сильное ядерное и слабое ядерное, электромагнитное, гравитационное - были тогда неотличимы друг от друга и объединены. Но так длилось недолго. Всему помешала очень высокая температура и плотность материи.

Эпоха великого объединения.

Эта фаза развития Вселенной началась с 10 -43 секунд и завершилась спустя 10 -35 секунд после Большого Взрыва. В самом её начале произошёл фазовый переход материи (схожий на конденсацию жидкости из газа, но применительно к элементарным частицам). Это случилось из-за отделения гравитации от "единого фундаментального взаимодействия".

Эпоха Великого объединения закончилась очередным разделением. Вселенная охладилась до отметки в 10 28 Кельвинов и сильное взаимодействие стало самостоятельным. Теперь только электромагнитные и слабые ядерные силы представляли единое целое.

Такое событие повлекло за собой новый фазовый переход. Благодаря ему в следующей эпохе истории Вселенной появились новые частицы, а пространство-время начало масштабное и резкое расширение. Пошли серьёзные изменения в плотности распределении вещества.

Инфляционная стадия.

Фаза инфляции расположена на временной шкале между 10 -35 и 10 -32 секунд после Большого Взрыва. В ту эпоху Вселенная увеличила свои размеры во множество раз. Раньше радиус всего мира был равен "планковской длине", а теперь космос расширился до размеров аж целого апельсина. И далее продолжал разрастаться с ускорением.

Образовалось несколько видов частиц. Это были кварки (фундаментальные частицы, из которых состоят адроны - например, протоны и нейтроны), электроны, гипероны и нейтрино (нейтральные фундаментальные частицы из класса лептонов).

Через некоторое время температура Вселенной снизилось, благодаря чему произошёл еще один фазовый переход. Из-за этого случилось т.н. "нарушение СР-инвариантности" и начались первые процессы такого явления, как "бариогенезис".

Бариогенезис - это объединение кварков и глюонов в новые, составные частицы - адроны.

Кроме того, возникла ещё и загадочная "барионная асимметрия Вселенной" - преобладание материи над анти-материей. Ученые до сих пор не смогли объяснить причины её возникновения.

Помимо выше написанного, у физиков и космологов есть предположения, что в данную эру Вселенная прошла через несколько циклов повторных нагревании и охлаждении.

К концу эпохи инфляции, строительным материалом Вселенной стала плазма из кварков, анти-кварков и глюонов (переносчиков сильного взаимодействия).

Дальнейшее снижение температуры Вселенной привело к очередному фазовому переходу. Он заключается в образовании физических сил, фундаментальных взаимодействий и элементарных частиц в их современной форме.

Данный фазовый переход уместился аж в три эпохи и закончился "первичным нуклеосинтезом".

Электрослабая эпоха.

Между 10 -32 и 10 -12 секунд после рождения мироздания. Электромагнитное и слабое взаимодействия до сих пор представляли единое электрослабое, т.к. температура Вселенной всё еще очень высока. тогда появились бозоны Хиггса (те самые которые 3 года назад нашли на Большом Андронном Коллайдере), W - и Z - базоны.

Помимо новых экзотических частиц и кварк-глюонной плазмы, космос был заполнен фотонами (фундаментальными частицами, или квантами, электромагнитного излучения) и лептонами.

Эпоха кварков.

Данная фаза расположена в период от 10 -12 до 10 -6 секунд после Большого Взрыва. Тогда случилось нарушение "электрослабой симметрии". Теперь все фундаментальные взаимодействия существуют отдельно друг друга.

В кварковой эпохе температура и энергия всё ещё слишком высоки, чтобы кварки окончательно слились в адроны.

Знаменательное превращение произойдёт только на следующем этапе развития мира.

Эпоха Адронов.

Между 10 -6 и 100 секунд после рождения Вселенной. Наконец-то кварк-глюонная плазма охладилась до такой степени, что бариогенезис завершился и на свет появились адроны и антиадроны. Однако большинство из этих частиц аннигилировали (взаимоуничтожаются). Сохранился лишь их малый остаток.

Вскоре Вселенная охладилась и расширилась настолько, что её температуры хватило всего лишь на создание лептонов и антилептонов. Эти частицы быстро становятся преобладающей массой во Вселенной.

Эпоха Лептонов.

В период от 100 секунд до 3 минут после Большого Взрыва расположилась эпоха лептонов. Тогда Вселенная стала прозрачной для нейтрино.

Космос продолжает охлаждаться. В конце эпохи температура снизилась до отметки, при которой образование новых лептонов стало невозможным. И пар "лептон-антилептон" настигает участь адронов. Большинство из них взаимоуничтожаются. Во вселенной осталось совсем небольшое количество лептонов, благодаря чему наступило доминирование фотонов.

Эпоха Нуклеосинтеза.

Одновременно с эпохой лептонов шёл и данный этап истории Вселенной. Благодаря достаточному охлаждению материи, выжившие адроны объединились в атомные ядра тяжелее водорода. Этот процесс и называют "первичным нуклеосинтезом".

В течение данной фазы возник первичный состав звёздного вещества: 75% водорода, почти 25% гелия, немного лития, дейтерия и бора.

Протонная Эра.

Началась с 3 минут после Большого взрыва и окончилась через 380.000 лет. Вещество стало доминировать над излучением.

В конце эпохи произошла рекомбинация (процесс, обратный ионизации) водорода. Из-за дальнейшего снижения температуры и расширения Вселенной, гравитация стала доминирующей силой.

Спустя 379.000 лет после Большого Взрыва, при температуре Вселенной в 3000 Кельвинов, произошло знаменательное событие - ядра атомов и электроны объединились в первые атомы. Началась "первичная рекомбинация". Это был поворотный момент: материя перешла из плазмы, непрозрачной для электромагнитного излучения в газообразное состояние. Вселенная наконец-то стала прозрачной.

В прошлые 379.000 лет фотоны страдали как могли. Различные заряженные элементарные частицы, коих раньше было вагон и маленькая тележка, препятствовали свету. Кванты света с ними взаимодействовали, из-за чего испытывали постоянные "пинки" и "толчки" со стороны "собратьев". Фотоны всё время отклонялись, либо поглощались заряженными частицами. В итоге, свет очень сильно рассеивался. Если бы наблюдатель попал в эту эпоху, он бы увидел перед собой один лишь густой туман.

Фотоны, как известно, взаимодействуют только с положительно и отрицательно заряженными частицами. И в конце "протонной эры" кванта света наконец-то обернулась удача. Отрицательные электроны и положительные протоны сгруппировались вместе с нейтронами в нейтрально заряженные атомы. Благодаря новым составным частицам, фотоны смогли свободно двигаться в пространстве и почти не взаимодействовать с веществом.

Реликтовое излучение и есть те самые фотоны, испущенные плазмой в сторону будущего расположения Земли и в связи с рекомбинацией избежавшие рассеяния. Они и до сих пор достигают нас, преодолевая расширяющееся пространство.

Тёмные века.

Наступили сразу после "протонной эры" и продлились 550 млн. лет. Вселенная настолько остыла, что после протонной эры, когда она переливалась красными оттенками, космос был ввергнут в черноту.

Это была скучная эпоха полной тьмы. Источников света (звезд или галактик) не было. Планет и астероидов уж подавно. Космос был заполнен преимущественно водородом, гелием и микроволновым реликтовым излучением.

Реионизация.

Часть истории Вселенной, которая началась сразу после Тёмных Веков и длилась 250 миллионов лет. По сравнению с прошлой, данная эра была повеселее и красочнее.

Начали образование кластеры - обособленные скопления пыли межзвёздного газа, которые возникали благодаря силам притяжения. Первыми плотными объектами стали квазары. Потом вспыхнули первые звёзды, появились газопылевые туманности.

Под силой гравитации они объединились в звёздные скопления, те - в галактики. Последние сформировали собственные скопления и сверхскопления.

Тогда, в недрах звёзд, в больших количествах образовались тяжелые элементы. Взрывы сверхновых разнесли их по Вселенной, из которых после сформировались холодные планеты, астероиды, метеорные тела, и, в конце концов, живые организмы.

Эра вещества.

Начиная с 800 миллионов лет после Большого Взрыва. Данная Эпоха идёт до сих пор.

Через несколько миллиардов лет после "реионизации" началось формирование планет и планетарных систем, в том числе и Солнечной Системы. Чуть более 8.4 миллиардов лет после Большого взрыва сформировалась Земля, а через ещё 500 миллионов лет на ней возникла жизнь.

Сегодня мы говорим об этой, ну как ее, Вселенной. Так уж получилось, что однажды она откуда-то появилась, и вот все мы здесь. Кто-то читает эту статью, кто-то готовится к экзамену, проклиная все на свете... Самолеты летают, поезда ходят, планеты крутятся, где-то всегда что-то происходит. Людям всегда было интересно знать один сложный ответ на простой вопрос. Как же все начиналось и как это мы докатились до того, что есть? Иными словами - как родилась Вселенная?

Итак, вот они - разные версии и модели происхождения Вселенной.

Креационизм: все создал Господь Бог


Среди всех теорий о происхождении Вселенной эта появилась самой первой. Очень хорошая и удобная версия, которая, пожалуй, будет иметь актуальность всегда. Кстати, многие ученые физики, несмотря на то что наука и религия часто представляются понятиями противоположными, верили в Бога. Например, Альберт Эйнштейн говорил:

«Каждый серьезный естествоиспытатель должен быть каким-то образом человеком религиозным. Иначе он не способен себе представить, что те невероятно тонкие взаимозависимости, которые он наблюдает, выдуманы не им. В бесконечном универсуме обнаруживается деятельность бесконечно совершенного Разума. Обычное представление обо мне, как об атеисте – большое заблуждение. Если это представление почерпнуто из моих научных работ, могу сказать, что мои научные работы не поняты»


Теория Большого Взрыва

Пожалуй, самая распространенная и наиболее признанная модель происхождения нашей Вселенной. Во всяком случае, о ней слышал практически каждый. Что говорит нам Большой Взрыв? Однажды, лет эдак 14 миллиардов назад, пространства и времени не было, а вся масса вселенной была сосредоточена в крохотной точке с невероятной плотностью – в сингулярности. В один прекрасный момент (если так можно сказать -времени-то не было) сингулярность не выдержала из-за возникшей в ней неоднородности, произошел так называемый Большой Взрыв. И с тех пор Вселенная постоянно расширяется и остывает.


Модель расширяющейся Вселенной

Сейчас доподлинно известно, что Галактики и иные космические объекты удаляются друг от друга, а значит, Вселенная расширяется. В 20-м веке существовало множество альтернативных теорий происхождения Вселенной. Одной из самых популярных была модель стационарной Вселенной, за которую ратовал сам Эйнштейн. Согласно этой модели, Вселенная не расширяется, а находиться в стационарном состоянии благодаря какой-то удерживающей ее силе.


Красное смещение – это наблюдаемое для далеких источников понижение частот излучения, которое объясняется отдалением источников (галактик, квазаров) друг от друга. Данный факт свидетельствует о том, что Вселенная расширяется.

Реликтовое излучение – это как бы отголоски большого взрыва. Ранее Вселенная представляла собой горячую плазму, которая постепенно остывала. Еще с тех далеких времен во Вселенной остались так называемые блуждающие фотоны, которые образуют фоновое космическое излучение. Ранее при более высоких температурах Вселенной данное излучение было гораздо мощнее. Сейчас же его спектр соответствует спектру излучения абсолютно твердого тела с температурой всего 2,7 Кельвин.

Теория струн

Современное изучение эволюции Вселенной невозможно без согласования его с квантовой теорией. Так, например, в рамках теории струн (теория струн основана на гипотезе о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн ), предполагается модель множественной Вселенной. Конечно, там тоже был Большой Взрыв, но он произошел не просто так и из ничего, а, возможно, в результате столкновения нашей Вселенной с какой-то другой, еще одной Вселенной.

Собственно, кроме Большого Взрыва, породившего нашу Вселенную, во множественной Вселенной происходит множество других Больших Взрывов, порождающих множество других Вселенных, развивающихся по своим, отличным от известных нам законам физики.


Скорее всего мы никогда не узнаем наверняка, как, откуда и почему появилась Вселенная. Тем не менее, размышлять об этом можно очень долго и интересно, а чтобы у Вас было достаточно пищи для размышлений, предлагаем посмотреть увлекательное видео на тему современных теорий происхождения Вселенной.

Проблемы развития Вселенной слишком масштабны. Настолько масштабны, что, по сути, даже не являются проблемами. Предоставим физикам-теоретикам ломать над ними головы и перенесемся из глубин Вселенной на Землю, где нас, возможно, ждет неначатый курсач или диплом. Если это так, мы предлагаем свое решение этого вопроса. Закажите отличную работу у , вздохните спокойно, и будьте в гармонии с собой и Вселенной.

Сейчас существует огромное количество предположений о возможном происхождении Вселенной. Но ни одно из них не может дать четкого ответа на главный вопрос о том, как появилась .

Парадоксальным остается тот факт, что после изучения и анализа одной из теорий и при нахождении в ней достаточного количества убедительных суждений, вникание в другую теорию также предоставляет немалое количество аргументов.

Именно поэтому поиск однозначного ответа на этот вопрос длится много лет.

На данный момент есть 3 основные теории возникновения Вселенной:

  • теологическая;
  • теория «Большого взрыва»;
  • научно-философская теория.

Теологический подход

Если рассматривать одну из древнейших теорий происхождения Вселенной, описанной в Библии, то происхождение мира датируется 5508 годом до рождества Христова.

Теологическая точка зрения о происхождении мира известна давно, но ее сторонниками являются в основном глубоко верующие люди и духовенство.

Эта теория наиболее часто подвергается критике ученых, которые совершенно иначе смотрят на происхождение мира и его структуру.

Если обратиться к толковому словарю, то мы там прочитаем, что Вселенная – это мировоззренческая система, включающая в себя космическую бесконечность и все тела, находящиеся в ней.

Более альтернативным определением понятия «Вселенная» является «сгусток звездных тел и галактик».

Большой взрыв – начало Вселенной

С научной точки зрения самой популярной теорией, объясняющей возникновение Вселенной, является так называемая теория «Большого взрыва».

Эта версия гласит, что около 20 млрд. лет назад Вселенная имела вид небольшой песчинки. Но несмотря на мизерные размеры этой субстанции, ее плотность составляла более 1100 г/см3 . Естественно, что на тот момент в состав этой субстанции не входили звезды, планеты или галактики. Она представляла лишь некий потенциал для создания многих небесных тел.

Высокая плотность стала причиной взрыва, который смог поделить песчинку на миллионы частей, из которых и образовалась Вселенная.

Есть и другая теория возникновения Вселенной. Ее суть перекликается с теорией «Большого взрыва». Исключением является только тот факт, что во второй теории Вселенная предположительно возникла не из вещества, а из вакуума. Другими словами, мир возник в результате взрыва в вакууме.

Слово "вакуум" переводится с латинского как "пустота", но под пустотой принято понимать не общепринятый смысл этого слова, а определенное состояние, в котором находится все сущее. Вакууму свойственно изменять свою структуру так, как это делает вода, превращаясь в твердое вещество или газ. В процессе одного из таких переходов из одного состояния в другое и возник взрыв, зародивший Вселенную.

Разработка теории «Большого взрыва» позволила ответить на многие важные вопросы, но вместе с тем поставила перед учеными еще больше новых. Например, что привело к нестабильности точки сингулярности и какое состояние имела частица до большого взрыва? Одной из главных загадок остается возникновение и природа пространства и времени.

Научно-философская теория

Кроме теологической и научной гипотез, дающих объяснение возникновению Вселенной, есть еще и научно-философский подход к этому вопросу.

Научно-философская теория рассматривает создание Вселенной определенным разумным Началом. Такой подход подразумевает непостоянное существование мира, так как есть фиксируемая точка начала. Также теория описывает постоянный рост и развитие Вселенной. Такие выводы сделали ученые, занимающиеся изучением состава и сияния звездных тел.

«Исследования Млечного пути, проведенные в 30-х годах ХХ века, установили, что звездное сияние смещено в сторону красной области спектра и чем более удалена звезда от Земли, тем больше оно выражено. Именно этот факт стал основанием для выводов ученых о постоянном росте и расширении Вселенной».

Вселенная, фото которой постоянно делают ученые, постоянно видоизменяется.

Еще одним фактом, подтверждающим расширение Вселенной, является явление под названием «смерть» звезды.

По химическому составу тело звезды состоит из водорода, который принимает участие во многих реакциях и превращается в более тяжелые элементы. После вступления в реакцию большей части водорода наступает «смерть» звезды. В некоторых теориях утверждается, что планеты являются результатом этого явления.

Эти исследования подтвердили еще одно предположение: водородный распад – природный и необратимый процесс, а Вселенная движется к своему концу.

Заметка: Добавка (присадка) в коробку передач поможет продлить срок службы вашего автомобиля. Купить присадку вы можете на сайте forumyug.ru по доступной цене.